Fast Temporal Encoding and Decoding with Spiking Neurons

نویسندگان

  • David Horn
  • Sharon Levanda
چکیده

We propose a simple theoretical structure of interacting integrate-and-fire neurons that can handle fast information processing and may account for the fact that only a few neuronal spikes suffice to transmit information in the brain. Using integrate-and-fire neurons that are subjected to individual noise and to a common external input, we calculate their first passage time (FPT), or interspike interval. We suggest using a population average for evaluating the FPT that represents the desired information. Instantaneous lateral excitation among these neurons helps the analysis. By employing a second layer of neurons with variable connections to the first layer, we represent the strength of the input by the number of output neurons that fire, thus decoding the temporal information. Such a model can easily lead to a logarithmic relation as in Weber's law. The latter follows naturally from information maximization if the input strength is statistically distributed according to an approximate inverse law.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Population Decoding of Spiking Neurons

The timing of action potentials in spiking neurons depends on the temporal dynamics of their inputs and contains information about temporal fluctuations in the stimulus. Leaky integrate-and-fire neurons constitute a popular class of encoding models, in which spike times depend directly on the temporal structure of the inputs. However, optimal decoding rules for these models have only been studi...

متن کامل

Error-Backpropagation in Networks of Fractionally Predictive Spiking Neurons

We develop a learning rule for networks of spiking neurons where signals are encoded using fractionally predictive spike-coding. In this paradigm, neural output signals are encoded as a sum of shifted power-law kernels. Simple greedy thresholding can compute this encoding, and spike-trains are then exactly the signal’s fractional derivative. Fractionally predictive spike-coding exploits natural...

متن کامل

Coding and Decoding with Adapting Neurons: A Population Approach to the Peri-Stimulus Time Histogram

The response of a neuron to a time-dependent stimulus, as measured in a Peri-Stimulus-Time-Histogram (PSTH), exhibits an intricate temporal structure that reflects potential temporal coding principles. Here we analyze the encoding and decoding of PSTHs for spiking neurons with arbitrary refractoriness and adaptation. As a modeling framework, we use the spike response model, also known as the ge...

متن کامل

A Small Universal Spiking Neural P System

In this work we give a small extended spiking neural P system that is weakly universal. This system is significantly smaller than the smallest strongly universal spiking neural P systems. Strong universality has strict conditions regarding the encoding of input and decoding of output. Weak universality has more relaxed conditions regarding the encoding of input and decoding of output. Păun and ...

متن کامل

Error-backpropagation in temporally encoded networks of spiking neurons

For a network of spiking neurons that encodes information in the timing of individual spike-times, we derive a supervised learning rule, SpikeProp, akin to traditional error-backpropagation. With this algorithm, we demonstrate how networks of spiking neurons with biologically reasonable action potentials can perform complex non-linear classification in fast temporal coding just as well as rate-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 10 7  شماره 

صفحات  -

تاریخ انتشار 1998